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Abstract—Many CNN-based segmentation methods have been
applied in lane marking detection recently and gain excellent
success for a strong ability in modeling semantic information.
Although the accuracy of lane line prediction is getting better
and better, lane markings’ localization ability is relatively weak,
especially when the lane marking point is remote. Traditional lane
detection methods usually utilize highly specialized hand-crafted
features and carefully designed post-processing to detect the
lanes. However, these methods are based on strong assumptions
and thus are prone to scalability. In this work, we propose a
novel multi-task method, which 1) integrates the ability to model
semantic information of CNN and the strong localization ability
provided by handcrafted features and 2) predicts the position of
vanishing line. A novel lane fitting method based on vanishing line
prediction is also proposed for sharp curves and non-flat road in
this paper. By integrating segmentation, specialized handcrafted
features and fitting, the accuracy of location and the convergence
speed of networks are improved. Extensive experimental results
on four lane marking detection datasets show that our method
achieves state-of-the-art performance.

I. INTRODUCTION

In 1998, the GOLD [1] system is proposed to detect
obstacles and lanes in a structured environment, which is
the first well-known method in lane detection to the best of
our knowledge. However, lane marking detection in the open
world and unstructured road (without distinct lane markings)
has been a long-standing problem in the last few decades.
In general, the primary difficulties of lane detection can be
summarized into two parts, which are feature extraction and
lane modeling. The feature extraction part can be used for
locating the lane markings. Then the lane modeling procedure
summarizes the detection results in the mathematical form.

Mainstream lane marking detection methods usually uti-
lize hand-crafted low-level image processing and carefully
designed post-processing to tackle the difficulties of feature
extraction and lane modeling. This kind of method is s-
traightforward and integrates much prior knowledge based
on certain assumptions. In a restricted environment, these
methods could achieve good performance. However, due to
the unsatisfactory generalization ability of the hand-crafted
features and assumptions, the scale of these methods is always
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(c) conventional baseline hough
transform

(d) deep method results at the far end
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Fig. 1. A demonstration of some conventional results from low-level image
processing method and deep method. Figure (a) shows the original road image,
and Figure (b) is the binary image of dark-light-dark (DLD) features, which
can be regarded as a pre-processing process to preliminarily extract lane line
by detecting the change of light and shade of the pixel. Figure (c) shows the
top 10 results of the Hough transform, which has been widely used in the
low-level image processing method. The deep method results at the far end
of the road are shown in Figure (d).

not large enough for practical use. Many assumptions like
parallel lane, flat ground, limited directions, fixed ROI, and
lane width might fail.

Moreover, the inherent pipeline structure of lane marking
detection could spread and enlarge the error caused by in-
appropriate assumptions. Another drawback of these methods
is that the detection range is usually small. Thus, the results
could not extend to the end of the road. It is crucial to detect
as far as possible because further detection results can bring
more reaction time in autonomous driving. As shown in Fig.
1(c), although the hand-crafted low-level image processing
method gives good feature extraction results of lane markings,
the analysis on these intermediate results is tough. Even
with the top 10 results, the Hough transform, a widely used
method in lane marking detection, still could not find the
correct lane markings. Although many methods utilize post-
processing like inverse perspective mapping (IPM) [2], [3],
[4], a transformation to eliminate the curvature of parallel
objects in the image caused by perspective effect, and temporal
information to achieve better performance, the difficulties of
analyzing low-level image processing still remain.

Another kind of method proposed recently utilizes deep
segmentation networks to estimate the location of lane mark-
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ing directly. The major advantage of this method is the
strong semantic ability. In the high semantic level, the deep
segmentation method achieves remarkable performance when
estimates the general lane marking directions. However, there
is a potential problem that the output stride of modern seg-
mentation architecture is large. The output stride usually varies
from 8 to 32 [5]. As a result, the detail of segmentation cannot
be well captured. Although some methods [6], [7] utilize
encoder-decoder structure to address the problem of output
stride, the above problem still exists. When it comes to the
lane marking detection, the estimated locations of the far end
lane markings might be poor. As shown in Fig. 1(d), when we
zoom in the result of the deep segmentation method at the far
end of the road, the localization ability becomes terrible.

In this paper, we integrate the localization ability of hand-
crafted low-level image processing method and the semantic
analysis ability of the deep segmentation method. A multi-
task lane segmentation network and a novel vanishing line
fitting method are proposed to tackle the above problems.
To combine the advantages of deep segmentation method
and traditional method, we propose an adaptive dark-light-
dark (ADLD) method for low-level feature extraction. Then
the proposed ADLD features are used as spatial attention
information in the multi-task network. The added ADLD
spatial attention could not only gain higher performance but
also speed up the training process. To further refine the results,
we propose a single parameter inverse perspective mapping
method, which uses the position of vanishing line position
as the only parameter. By using the proposed method, the
number of IPM parameters drops from 6 [8] to one, which can
be obtained from the previous multi-task network. Moreover,
the proposed method could run at 20-50 fps depending on
different backbone networks.

The main contributions of our work are summarized as
follows.

• Propose a novel multi-task framework for lane detection.
It consists of lane marking segmentation and vanishing
line prediction tasks. The vanishing point prediction task
makes the inverse perspective mapping can be implement-
ed without the camera parameters, which bring a refined
segmentation result.

• Utilize the ADLD features to guide the training process,
directly providing pixel-level spatial attention for the
front end and DULR module. The ADLD features not
only enlighten the network to focus on the lane line but
also make the model works faster than other attention
modules.

• Conduct extensive ablation studies to verify that all the
proposed components contribute to the detection results,
and experiments on four datasets (Caltech lanes [11],
KITTI [26], Tusimple Benchmark [38] and CULanes
[30].) show that the proposed framework achieves com-
parable performance with a faster speed.

The remainder of the paper is structured as follows. In Sec.
II, a brief review of many traditional and deep methods is
listed. The proposed method is described in Sec. III. Extensive
experiments and ablation studies are shown in Sec. IV. At the

end of this paper, Sec. V summarizes this work.

II. RELATED WORK

In the past many years, many methods are proposed for lane
marking detection in many aspects. In general, these methods
can be divided into two categories, which are deep segmen-
tation method and traditional method using hand-crafted low-
level image processing and carefully designed post-processing.

A. Traditional Method

The GOLD system [1] utilizes stereo IPM to detect lanes
and obstacles. Due to the limited computing resources, this
system is just a customized prototype that runs at 10fps. In
[9], a stochastic road shape estimation system is proposed. A
two-stage lane marking extracting algorithm is applied in this
work. Meanwhile, an estimation using particle filtering is also
proposed. Unlike the cubic spline used in [9], [10] proposed a
lane detection and tracking method using the B-Snake model.

Then Hough transform and random sample consensus, a
combination of IPM, is proposed in [11]. In this work, the
feature extraction method is a specially designed Gaussian
filter, which has a similar shape with the ridge. However,
the direction of the Gaussian filter is fixed. In [12], gabor
filters are introduced to describe multiple orientations. The
post-processing method of [12] is still a Hough transform.
Then a Gaussian sum particle filter is proposed in [13], which
is based on an assumption of the vanishing point. In [14],
a hierarchical approach is proposed, which utilizes low-level
classifiers and spatial layout features.

Unlike previous works [11], [12], [15] focusing on im-
proving feature extraction, [16] proposes a novel method that
eliminates the shadow on the road to improve performance
and robustness. [17] proposed an invariant illumination lane
marking detection method. This paper utilizes YCbCr color
space to achieve illumination invariant processing of road
images. Some works try to adopt more prior knowledge. In
[18], an optimization technique with a conditional random
field (CRF) is proposed in this paper. The original lane
marking detection problem is transformed into an optimization
problem. In [19], a lane marking ground truth generation
method is proposed based on the Time-Sliced image, which
is stacked from multiple frames. Later on, [20] introduces a
similar technique called spatiotemporal image to predict lane
markings. From the above, we can see that most traditional
methods focus on improving feature extraction and utilizing
prior knowledge, but scalability problems always exist.

B. Deep Method

With the rising of deep segmentation methods [21], many
deep methods are proposed for lane marking detection. [22]
gave a primacy attempt that combines deep networks and
random sample consensus. The present deep networks in [22]
is auxiliary. Following the idea of [22], [23] introduces a
region-based lane marking classification method, which also
uses the networks as auxiliary means. In [24], a multi-task
network aims to evaluate the effectiveness of deep networks
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Fig. 2. Overall structure of the proposed method. The proposed ADLD attention multi-task network first segments the lane markings and predicts the position
of vanishing line. Then a IPM method is proposed to utilize the position of vanishing line. By integrating these results, the final fitting results are obtained.

on highway driving is proposed. In [25], a network architecture
that aims to find the best trade-off between segmentation
quality and runtime and achieves top accuracies on the KITTI
dataset [26]. A Bayesian network is proposed in [27], which
can detect both road and road boundaries in a single process.

After proving the effectiveness of multi-task learning, [28]
proposes a lane and road marking detection network, which
utilizes the multi-task information derived from the vanishing
point. Besides convolutional neural networks, [29] introduces
a long short-term memory network that regards lane mark-
ing detection as a sequential problem. Another method that
captures the sequential information of lane is the SCNN [30].
The SCNN method regards the spatial information as the deep
information and changes the direction of convolution. Such
spatial convolution benefits the information flow along the lane
and thus gains better performance. When the segmentation
accuracy of lane markings becomes high, more methods start
to extract lane markings from segmentation. [8] proposed
an instance segmentation network which also outputs the
estimation of camera parameters. These parameters are used
for lane fitting. A potential problem of this method is that
the training of the network is based on an ill-conditioned
problem. The calculation of the loss function contains an
inverse matrix when conduct mapping and inverse mapping
utilizing these camera parameters. In this way, for a tiny
difference in the input, the inverse operation could enlarge this
difference. As a result, the training of this network might be
tough. Different from [8] adopts clustering, [31] introduces
an instance segmentation method that directly solves the
relationship problem defined by instances and uses graph
coloring to assign instance ID. The above works are in visual
image-based lane detection. It is still challenging to accurately
identify road areas in visual images, such as illumination
changes and blurred images. Because LIDAR data is less
likely to be susceptible to visual persuasion, some works [32],
[33] are integrating LIDAR data to improve the visual image-
based road detection. Although these methods achieve great
performance, the mentioned location problem still exists.

III. METHODOLOGY

In this section, we demonstrate the proposed ADLD atten-
tion multi-task network and the lane fitting method based on
the vanishing line. The overall structure is shown in Fig. 2.

A. Adaptive dark-light-dark features

The main idea of adaptive DLD features is that the lane
markings are bright and the surrounding are dark. Denote
D+(x, y) as the right light-dark part image and D−(x, y) as
the left dark-light part image. We have:

D+(x, y) = I(x, y)− I(x+m, y), (1)

D−(x, y) = I(x, y)− I(x−m, y), (2)

where I(x, y) is the value of a gray image, and m is the
neighbor distance parameter. Generally, the m is set as the
width of the lane. Inspired by canny [34] edge detection, we
adopt an adaptive two-stage threshold method to obtain binary
masks from the dark-light-dark features. The high threshold
is defined as the top q% quantile value from corresponding
features, and the low threshold is defined as the top 2q%
quantile value. In this work, q is set to 10. Thus we have:

Dhigh =

{
1 D+(x, y) > ht+ ∧D−(x, y) > ht−,
0 else

(3)

Dlow =

{
1 D+(x, y) > lt+ ∧D−(x, y) > lt−,
0 else

(4)

where the ht and lt are high and low thresholds obtained from
top q% and 2q% quantile values, respectively. Then, we use
connected component in Dhigh to select the weak features in
Dlow. The final binary image is generated in this way.

B. ADLD Attention

Because ADLD features provide pixel-wise labeling, its
localization ability is good enough to be a heuristic for spatial
attention. We use such heuristic information as spatial attention
[35], [36], which could guide the training process. Inspired by
SCNN [30], we also utilize the DULR module, an information
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Fig. 3. The structure of the multi-task attention network. The ADLD attention is both added to the input layer and the DULR module. The DULR module is
used for better performance as [30]. D, U, R, and L refer to the four feature passing units, which are similar in structure. The spatial information is conveyed
from up to down, down to up, left to right, right to left. The output of the network is composed of segmentation and vanishing line prediction. As shown in
Fig. 4, the vanishing line prediction task is accomplished with indicator vector.

pass module from row and column directions with convolution
operation in slice features, which could capture the spatial
information to optimize the segmentation of lane markings.
Unlike common spatial and channel-wise attention obtained
from networks by itself, the ADLD attention can be seen as a
preprocessing of original data. There are two parts that utilize
ADLD attention in the proposed segmentation network.

As the long and thin lane markings are hard to learn for a
network, the first parts where we add the attention information
is the input layer. In this work, the ADLD attention is
concatenated with the original inputs. In this way, the added
information could speed up the training process. As we all
know, the shallow layers of neural networks represents low-
level edge and texture information. Because the added ADLD
features are already composed of low-level information, the
learning of shallow layers could benefit from the ADLD
features.

The second part where we add the attention information
is the DULR module. The ADLD attention is scaled and
concatenated with the features generated from previous convo-
lutional layers. Because the DULR module encodes the spatial
information, it is convenient to introduce the ADLD attention
in the DULR module. With the ADLD features added, the
salient part in the attention, which is the lane marking part
in most cases, could contribute to the message passing within
the DULR module. As a result, the DULR module encodes
more information guided by the ADLD attention, and the lo-
calization ability of the network is improved. More discussions
about the impact of ADLD attention can be seen in Sec. IV.

C. Vanishing Line Estimation Task

In this paper, the vanishing line is defined as the horizontal
line crossing vanishing point. Due to the vanishing point’s
inherent geometry information, there are many methods [28],
[10] utilize it as auxiliary knowledge to improve performance.
For the same reason, the vanishing line could help other
tasks like lane marking segmentation and fitting in this work.
The common ways of using deep neural networks to predict
vanishing points are segmentation-based methods. As shown
in Fig. 4(b), the idea of segmenting vanishing point image

。

(a) vanishing point (b) binary segmentation

二

(c) quadrant segmentation (d) vanishing line 

Fig. 4. Comparison of vanishing point segmentation and the proposed
vanishing line prediction task. Figure (a) shows the location of the vanishing
point in a road image. In figure (b) and (c), two kinds of segmentation targets
are shown. The ideal binary segmentation in figure (b) only treats the vanishing
point as the foreground. Figure (c) shows a variant that divides the image into
four parts according to the vanishing point location. The proposed vanishing
line prediction task is shown in figure (d). The prediction of the vanishing
line can be simplified by using an indicator vector.

is straightforward, but this kind of task might fail due to the
heavily imbalanced data [28]. The area of the vanishing point
in this task is too small to dominate the training process,
and the output of the network would converge to the class of
background. An improved variant in Fig. 4(c) is to segment
four parts divided by vanishing point. However, the determi-
nation of the vanishing point’s location is relatively tough.
The proposed vanishing line estimation task only predicts
the location of the horizontal line. In this way, the original
task can be simplified with an indicator vector along the
vertical direction shown in Fig. 4(d). Such simplification could
improve the performance of vanishing line prediction and
eliminate the difficulties in determining the location from a
segmentation mask. Furthermore, the computational cost is
lower than the quadrant segmentation.

The overall structure of the proposed multi-task attention
network is shown in Fig. 3. Our network adopts raw image
and ADLD features as inputs and outputs the segmentation of
lane markings and the prediction of vanishing line position.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

Road surface

Image bottom

C

O
P

Px

Py

u

v

Image plane

P’

Pu

Pv

Image top

Fig. 5. Geometric model of IPM. β is the horizontal angular aperture of the
camera. The point C is the optic center, and the point O is the projection of
C on the ground.



2

Fig. 6. Side view of the IPM Geometric model. θ is the pitch angle, and α
is the vertical angular aperture of the camera.

D. Lane Fitting based on Vanishing Line

Due to the perspective effect, the curve lane trends have
bigger curvature at the far end of the road while the lane in
the lower part of the image is fairly straight. An excellent lane
marking fitting method should generally fit a straight line in
the majority part of the lane. Meanwhile, if the lane is not
straight and has large curvature caused by perspective effect,
the method should fit as bent as possible at the far end part of
the road image. This phenomenon causes the main difficulty
in lane marking fitting.

One way to eliminate such difficult is to conduct inverse
perspective mapping and get rid of the effect produced by
perspective. However, the IPM process is parametric and
requires 6 intrinsic or extrinsic camera parameters. It should
be noted that these parameters are not easy to obtain, and the
extrinsic camera parameters vary if the position of the camera
changes. Besides, many lane marking detection datasets don’t
provide these parameters. To tackle the above problems, we
propose a single parameter IPM method that the required
parameter can be easily obtained from the previous vanishing
line prediction network.

Based on the principle of pinhole imaging, the geometric
model of IPM is shown in Fig. 5. Denote α as the vertical
angular aperture of the camera and β as the horizontal angular
aperture of the camera. θ means the pitch angle of the camera,
and h is the height of the camera. The image size is denoted
as m× n. The relations between a pixel (u, v) and the world
coordinate (x, y) can be formulated as:

y = hcot

{
θ − atan[tanα(1− 2u

m− 1
)]

}
(5)

and

x =
√
h2 + y2

tanβ(
2v

n− 1
− 1)√

1 + [tanα(1− 2u

m− 1
)]2
. (6)

Then the corresponding inverse transformation is:

u =
m− 1

2
[1−

tanθ − atan(
y

h
)

tanα
] (7)

and

v =
n− 1

2

{
1 +

x

tanβ
√
h2 + y2

√
1 + tan2[θ − acot( y

h
)]

}
.

(8)
From Eq. 5 and 6, we can see that for different parameter

of h, the ratio of mapped x and y are constant. Meanwhile,
the effects of β, m, and n are linear according to the above
equations. By this way, after the rasterization and scaling
of the inverse perspective image, these parameters would no
longer affect the generated image. As a result, there are only
two parameters pitch angle θ and vertical angular aperture
of the camera α that could affect the IPM. Fortunately, the
pitch angle can be obtained from the previously introduced
vanishing line prediction network. In [37], the pitch angle can
be estimated from the position of vanishing point:

θ = atan[tanα(1− 2ȳ

n
)], (9)

where ȳ is the vertical position of the vanishing point and
also the position of the vanishing line. It can be verified that
the vertical angular aperture of the camera α would no longer
affect the IPM transformation by using the estimated pitch
angle. As described above, the parameters of m, n, and h
would not affect the results of IPM. In this way, as long as
we set meaningful but not have to be exact values to these
parameters, the proposed method could generate a correct IPM
image.

We can now use the proposed IPM method based on
vanishing line prediction to refine the results of lane marking
segmentation. Because the perspective effect can be eliminated
using IPM, the lane marking points obtained from the seg-
mentation mask are transformed with the proposed mapping
method. In the transformed space, the lane marking points
is fitted with cubic polynomials. Then the fitted points are
transformed into the original image space. The overall method
is summarized in Algorithm 1.

IV. EXPERIMENT

In this section, we first show the datasets and the corre-
sponding experimental setup we used. Then, the effectiveness
of the proposed method is examined using ablation studies,
and the experimental results on the four lane marking detection
datasets are shown.

A. Data preparation and Setup

Dataset. There are four datasets which are Caltech lanes
dataset [11], KITTI dataset [26], Tusimple Benchmark dataset
[38] and CULanes dataset [30] used in this work. The Caltech
lanes dataset contains 1,224 labeled frames and 4,172 marked
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Algorithm 1 Lane fitting based on vanishing line
Input:

The image size m and n;
Meaningful arbitrary parameters of height h, vertical angular
aperture of the camera α and horizontal angular aperture of the
camera β;
Lane marking points P obtained from segmentation mask;
Estimated vanishing line position ȳ;

Output:
Fitted Lane marking points Pfit;

1: Calculate the pitch angle using Eq. 9;
2: Transform lane marking points P to P ′ in the IPM space using

Eq. 5 and 6;
3: Fit lane marking point P ′fit using P ′ with cubic polynomials;
4: Transform fitted point P ′fit to Pfit in the original image space

using Eq. 7 and 8;
5: return Pfit;

lanes. The two urban scenarios in Cordova and Washington
are included in the Caltech lanes dataset. The KITTI lane
detection dataset is part of the KITTI road benchmark, with 95
images for training and 96 images for testing. The Tusimple
Benchmark dataset is released for the CVPR 2017 workshop
on the autonomous driving challenge, which is composed
of about 10,000 one-second-long video clips. Among them,
6,408 images are annotated with lane markings. Each frame
contains 2 to 5 lanes. There are 3,626 images used for training
and 2,782 images used for testing. The CULanes dataset is
collected in Beijing with 88,880 frames for the training set,
9,675 frames for the validation set, and 34,680 frames for the
testing set. The dataset is divided into nine scenarios: normal,
crowded, night, shadow, and curve, etc. The information of
the four datasets is listed in Table I.

TABLE I
BRIEF COMPARISON OF THE FOUR DATASETS.

Dataset Training Testing Size Scenarios

Caltech N/A 1224 640x480 urban streets
KITTI 95 96 1242x375 urban streets

Tusimple 3626 2782 1280x720 high way
CULanes 88880 34680 1640x590 urban streets

Vanish point annotation. In our multi-task framework, for
lane marking segmentation task, supervised labels are already
provided. However, for the vanishing line prediction task, we
have no relevant supervised information to use. Therefore,
we manufacture vanishing point labels for the above four
datasets. First of all, we use the ground truth of lane lines for
automatic labeling. By detecting where the lane lines intersect,
we annotate the crossover position as the vanishing point. For
some images with large curvature, we manually label them.
Since each image only needs to be marked with one point, it
does not consume much labor. In total, the entire annotation
process costs 5 human hours.

Training details. For the Caltech, Tusimple Benchmark and
CULanes dataset, Adam [39] optimizer is utilized with a base
learning rate of 5e-4 and a weight decay of 1e-4. The learning
rate of KITTI dataset is set to 2e-4. The learning rate policy
is the poly with a power of 0.9. For the Tusimple Benchmark

(a) Transformation samples on three datasets by the proposed one parameter required IPM method. 

(b) Transformation sample on Caltech Lanes dataset by complete parameters required IPM method. 

Fig. 7. (a) The proposed IPM method is applied on the three different datasets,
where the experiment configurations are the same. (b) The original IPM is
conducted on the Caltech Lane dataset with its camera parameters.

dataset and CULanes dataset, the image is resized and cropped
to 800× 288. Random flip and rotation augmentation are also
utilized.

B. Evaluation

In this work, we follow the evaluation metrics defined by
the corresponding datasets. For the Caltech lanes dataset, the
criterion of the correct lane is defined as: min(d̂1, d̂2) ≤ t1
and min(d̄1, d̄2) ≤ t2, in which d̂ is the median value of
the nearest distance, and d̄ represents the mean distance.
The subscript indicates the lane number used for calculation.
Following the implementation of Caltech lanes dataset, t1 and
t2 are set to 20 and 15 respectively. The evaluation metric is
the rate of correctly detected lanes.

For the KITTI dataset, we use the metrics provided by
the evaluation benchmark, which are maximum F-measure
(MaxF), average precision (AP), precision, recall, false posi-
tive rate (FPR) and false negative rate (FNR). Suppose τ is
the threshold of classification. The primary metric MaxF is
defined as:

MaxF = max
τ

F −measure. (10)

F-measure is defined as:

F −measure =
(β2 + 1)PR

β2P +R
, (11)

in which P is the precision, R is the recall and β is set to 1
as the F1-measure.
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Fig. 8. Training losses of segmentation task with different settings of attention.
W/O Attention is the baseline method without attention. SA-DULR means
the self-attention module is added to the DULR module. ADLD-INPUT
and ADLD-DULR are methods that ADLD attention is added to the input
layer and the DULR module respectively. ADLD-BOTH means that ADLD
attention is both added to input layer and DULR module.

For the Tusimple Benchmark dataset, the evaluation metric
is defined according to the correctly detected lane marking
points. The formula is:

acc =

∑
clip Cclip∑
clip Sclip

. (12)

where Cclip is the number of correct points in the last frame
of the clip, and Sclip is the requested points in the last frame
of the clip. If the distance between the sampled detection lane
point and the ground truth is below 20 pixels, it is considered
as a correct match. If the number of detected lanes beyond
N + 2 or the detection time is larger than 200ms, all of the
points in this clip are considered as false detection. N is the
number of lanes in the ground truth.

For the CULanes dataset, the evaluation metric is based on
intersection-over-union (IoU). The ground truth is composed
of 30 pixels wide lane segmentation mask. If the IoU of
detection is larger than a certain threshold, it is regarded as a
true positive. There are two thresholds, which are 0.3 and 0.5,
corresponding to loose and strict evaluation. Then the final
evaluation metric is F1-measure.

C. Ablation Study

1) Effectiveness of IPM based on vanishing line: In Sec.
III-D, we propose the fitting method based on vanishing line.
One key step in this method is IPM based on vanishing line.
As described in Sec. III-D, compared with other IPM methods,
the proposed IPM method only requires the vanishing line’s
position, and other parameters are arbitrary. To prove the
effectiveness of this method, 1) we conduct the proposed IPM
on three entirely different cameras under the same experiment
configuration. As shown in Fig. 7(a), the proposed method
on three datasets captured by different camera parameters
achieves consistent and quite good results. 2) Most Lane
line datasets do not provide the camera parameters. Among
the dataset used in the paper, only the Caltech Lane dataset

Fig. 9. Training losses of vanishing line prediction task with different settings
of attention.

contains the camera parameters. To prove that the IPM method
based on the vanishing line and camera parameters have the
same performance, we conduct the comparison experiments on
the Caltech Lane dataset. The third row of Fig. 7(a) shows that
the proposed IPM achieves the approximate results comparing
with the original IPM method shown in Fig. 7(b).

2) Effectiveness of ADLD Attention: In our framework, two
parts are combined with the proposed ADLD attention. We
evaluate the effectiveness of the proposed ADLD attention by
comparing the losses of different tasks. In this experiment,
segmentation and vanishing line losses are shown in Fig. 8 and
9. Each task contains five experimental settings. The first one
is the original network without ADLD attention. The second
and the third settings are the network added with only one
ADLD attention to the input layer or the DULR module. The
fourth one is the setting, in which ADLD attention is added
to the input layer and the DULR module. In order to compare
the differences of ADLD attention and other self-attention
methods, another method Point-wise Spatial Attention Net-
work (PSANet) [40] is also included. Due to the complexity of
PSANet, the self-attention module is only added to the DULR
module to replace the original ADLD attention, which has a
smaller size. All of the experiments are conducted on Tusimple
Benchmark Dataset with the same parameters.

From Fig. 8 and 9, we can see that all of the networks
combined with the ADLD attention or self-attention achieve
better performance in both lane marking segmentation and
vanishing line prediction tasks. However, the training losses
of the second task of the self-attention method are less stable.
ADLD attention is slightly better than self-attention in the
segmentation task, while self-attention has better results in
vanishing line prediction task. The reason is that ADLD
attention is designed for lane markings instead of objects like
the sky. So it has less effect on the vanishing line prediction
task than self-attention. These results also confirm that multi-
task training could achieve better performance.

Another comparison of these different attention settings is
shown in the first row of Table II, which is the lane marking
point accuracy on the Tusimple Benchmark testing set. We can
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Fig. 10. Fitting results on non-flatten ground.

see that all of the attention methods achieve higher accuracy
than the baseline method without attention. Although the
self-attention method could also utilize spatial attention, the
ADLD attention is specialized for the segmentation task so
it could gain higher performance for this task. Besides, the
computational complexity of ADLD features is linear, and the
speed is much faster than convolutional layers. In this way,
the proposed attention method is much simple and efficient
for lane marking segmentation.

TABLE II
LANE MARKING POINT ACCURACY ON TUSIMPLE BENCHMARK TESTING
SET. PLAIN NETWORK MEANS THE SETTING WITHOUT DULR MODULE

AND ATTENTION. FIRST ROW IS THE LANE MARKING POINT ACCURACY OF
THE ORIGINAL NETWORK OUTPUTS. SECOND ROW SHOWS THE RESULTS
OF LEAST SQUARES FITTING. THE LAST ROW CONTAINS THE RESULTS OF

THE PROPOSED FITTING METHOD.

Method Plain Network W/O Attention SA-DULR ADLD-INPUT ADLD-DULR ADLD-BOTH

W/O Fitting 95.49 95.49 95.52 95.53 95.55 95.73
W/ LS Fitting 95.53 95.89 95.84 95.93 95.97 96.00
W/ Propose Fitting 96.06 96.19 96.29 96.27 96.33 96.37

3) Effectiveness of Lane Marking Fitting: In this subsec-
tion, we demonstrate the effectiveness of the proposed fitting
method. The proposed lane marking fitting method uses the
prediction of vanishing line as a parameter. Generally, the
higher accuracy of vanishing line prediction results in fewer
errors of the proposed fitting method. However, because the
proposed transformation method of IPM is mathematically
invertible, the transformed lane marking points with the in-
accurate parameter of vanishing line prediction could still be
inversely transformed. In this way, the demand for accuracy of
vanishing line prediction is not very strict. The average mean
intersection over union (mIoU) of vanishing line prediction is
98.35% when training on the Tusimple Benchmark dataset. It
is good enough for subsequent tasks.

Because only the Tusimple Benchmark dataset uses the
accuracy of lane marking points as the evaluation metric
directly, the experiments of lane fitting are carried out on
the Tusimple Benchmark dataset. The experiment with a plain
network that excludes the DULR module and attention is also
added. The rest of the settings are the same as Sec. IV-C2.
The results of lane marking fitting are shown in Table II.

The fitted results for all of the settings are better than the
raw outputs and the results of the least-squares. Moreover, the

estimated vanishing line could alleviate the perspective effect
from the non-flat ground, as shown in Fig. 10.

4) Computational Cost of Different Steps: The proposed
method is composed of several steps. It is necessary to
show the detailed computational cost of every step. Because
different settings of attention at different places have little
effects on computational time, we only use the network that
ADLD attention is both added to the input layer and DULR
module. We have reduced the font of the formula in the revised
version. We use VGG16 as our backbone network with an
input size of 800×288, and this experiment is carried out with
a single GTX 1080Ti. Therefore, the runtime is computed on
the GPU. The results are shown in Table III. We can observe
that the generation of ADLD features and the fitting process
cost little time compared with the network itself. The proposed
ADLD features and fitting process are efficient.

TABLE III
RUNTIME COMPARISON BETWEEN DIFFERENT STEPS. THE RUNTIME OF

IPM TRANSFORMATION AND FITTING STEP VARIES WITH DIFFERENT
NUMBER OF DETECTED LANE MARKING POINTS.

Step ADLD Features Network IPM & Fitting

Runtime(ms) 0.5 78.4 0.0-2.2

D. Evaluation Results

In this section, we demonstrate the results of the proposed
method. For the Caltech lanes dataset, [11] is used for compar-
ison. For the KITTI dataset, RBNet [27], Up-Conv-Poly [25]
and SPRAY [14] are used for comparison. For the Tusimple
Benchmark dataset [30], [8], [31] and some not published
methods are used for comparison. For the CULanes dataset,
VGG [41], ResNet [42], Renet [43], DenseCRF [44] and
SCNN [30] are used for comparison. For VGG and ResNet,
we use them as the backbone network of Deeplab [45]. All of
the settings of our method can be seen in Sec. IV-A.

TABLE IV
EXPERIMENTAL RESULTS ON CALTECH LANES DATASET.

Method Clips Correct Rate False Positive

Caltech

Cordova1 97.21 3.00
Cordova2 96.16 38.38

Washington1 96.70 4.72
Washington2 95.13 2.21

Proposed

Cordova1 98.71 0.64
Cordova2 97.25 0.21

Washington1 98.75 0.78
Washington2 98.89 0.00

1) Caltech Lanes dataset: Because the size of the Caltech
Lanes dataset is relatively small, we utilize a pre-trained model
on the CULanes dataset to finetune the results on the Caltech
Lanes dataset. In this experiment, 80% of the original testing
set are randomly selected as the training set, and the remains
are used for testing. The results are shown in Table IV.
Furthermore, some visual results on the validation test are
shown in Fig. 11. The third column is our prediction results,
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Fig. 11. Visual results on the Caltech Lanes dataset. For each example, from left to right are: input image, ground truth, proposed method. The four colors
from left to right are left lane, current lanes, and right lane.

which are jagged due to down-sampling in the network. From
the overall fitting effect, it is very close to the ground truth in
the second column. Moreover, it can be seen that the prediction
even fits the hidden lane in some cases.

From Table IV, we can observe that our method achieves
satisfactory results compared with the Caltech method. Mean-
while, the false-positive rates of the proposed method are very
low. In fact, there are some false positives in the outer lane’s
results. In this case, the ability of our method is quite good.

2) KITTI dataset: The results of the KITTI dataset are
shown in Table V. Because the ground truth format of the
KITTI dataset is the segmentation of road instead of lane
markings, which is not compatible with our method, the fitting
process and DULR module are removed. The output of the
network is modified from the lane markings prediction to the
road area segmentation. The proposed method achieves similar
results with the first and second methods. Besides, it has a very
fast speed.

3) Tusimple Benchmark dataset: The results of the Tusim-
ple Benchmark dataset are shown in Table VI. Because the first
method is not published, we do not know whether the authors
utilize extra data. Without considering the unknown method,
the proposed method achieves promising performance on the

TABLE V
LANE ESTIMATION EVALUATION ON KITTI DATASET (%).

Method MaxF AP PRE REC FPR FNR Runtime

NVLaneNet 91.86 91.42 90.89 92.85 1.64 7.15 0.08 s
ILN 91.62 91.17 91.98 91.26 1.40 8.74 0.24 s

Proposed 91.37 91.40 93.08 89.71 1.17 10.29 0.05 s
RBNet 90.54 82.03 94.92 86.56 0.82 13.44 0.18 s

Up-Conv-Poly 89.88 87.52 92.01 87.84 1.34 12.16 0.08 s
SPRAY 83.42 86.84 84.76 82.12 2.60 17.88 0.05s

TABLE VI
TUSIMPLE BENCHMARK LEADERBOARD.

Rank Method Published Extra Data Accuracy FP FN

1 leonardoli No N/A 96.87 0.0442 0.0197
2 XingangPan Yes Yes 96.53 0.0617 0.0180
3 Proposed N/A No 96.51 0.2393 0.0316
4 aslarry Yes No 96.50 0.0851 0.0269
6 DavyNeven Yes No 96.38 0.0780 0.0244

Tusimple Benchmark dataset with no extra data. It is also very
close to SCNN, which utilizes extra data.

The visualization results can be seen in Fig. 12. From it,
we can see that the proposed method shows good performance
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Fig. 12. Visual results on the Tusimple validation set. For each example, from left to right are: input image, ground truth, proposed method. The four colors
from left to right are left lane, current lanes, and right lane.

when dealing with sharp curves at the far end part of the road.
Meanwhile, the localization ability is better due to the effect
of ADLD attention.

4) CULanes dataset: The results of the CULanes dataset
are shown in Table VII. The whole test set is divided into
9 categories. As we can see, in most cases, our method
achieves the best results. For some tough scenarios like curve
and shadow, our method outperforms other methods because
the proposed ADLD attention makes the network have better
localization ability. For the crossroad, the ADLD attention
could filter its features and has fewer false positives. The
visualization results are shown in Fig. 13. From the figure, the
fitting performance in the CULanse dataset is still excellent.
Notice that in the first row, there is no prediction result. The
reason is that in this dataset, no prediction is made whenever
a zebra crossing is encountered. In this image, there are many
zebra crossings, so there are no predictions here.

By testing on four datasets, the advantages of the proposed
method are summarized as follows. 1) Reduce the false-
positive rates, which is contributed by the ADLD attention
module. 2) Because ADLD does not require self-learning, so it
makes the detection framework has a faster speed. 3) From the
visualization results, the proposed method outperforms others
when dealing with sharp curves at the far end of the road.
In conclusion, our method takes into account both speed and

TABLE VII
COMPARISON ON CULANES DATASET. FOR CROSSROAD, THE NUMBER OF

FALSE POSITIVES IS SHOWN.

Category VGG16 ResNet50 ResNet101 ReNet DenseCRF SCNN Ours

Normal 83.1 87.4 90.2 83.3 81.3 90.6 90.2
Crowded 61.0 64.1 68.2 60.5 58.8 69.7 69.7

Night 56.9 60.6 65.9 56.3 54.2 66.1 67.3
No line 34.0 38.1 41.7 34.5 31.9 43.4 44.7
Shadow 54.7 60.7 64.6 55.0 56.3 66.9 68.5
Arrow 74.0 79.0 84.0 74.1 71.2 84.1 84.8

DazzleLight 49.9 54.1 59.8 48.2 46.2 58.5 59.7
Curve 61.0 59.8 65.5 59.9 57.8 64.4 69.6

Crossroad 2060 2505 2183 2296 2253 1990 1933

accuracy. It contributes to the practical application of lane
detection.

V. CONCLUSION

In this paper, we propose a novel multi-task attention
method for lane marking detection, which combines deep
and traditional methods. Specifically, the proposed method
improves the localization ability by ADLD attention that could
also benefit the performance of segmentation and vanishing
line prediction. Moreover, a lane fitting method based on
vanishing line prediction is introduced, which benefits the
proposed network. For the proposed components such as
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Fig. 13. Visual results on the CULanse dataset. For each example, from left to right are: input image, ground truth, proposed method. The four colors from
left to right are left lane, current lanes, and right lane.

ADLD attention, IPM based on vanishing line and lane fitting,
comprehensive ablation studies are carried out to verify their
effectiveness. These experimental results show the effective-
ness of the prosed method. Meanwhile, extensive experiments
on four datasets which are Caltech Lanes dataset, KITTI
dataset, Tusimple Benchmark dataset and CULanes dataset
also demonstrate the effectiveness of our method.
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APPENDIX A
DERIVATION OF THE IPM BASED ON VANISHING LINE

In this section, we provide a complete derivation of Eq. 5
and 6.

The detailed illustrations of geometry model are shown in
Fig. 14 and 15. In order to establish the relations between
point P (Px, Py) and P ′(Pu, Pv), we have:

Py = OCtan(6 PjCO). (13)

The 6 PjCO can be represented as:

6 PjCO = 6 PjCM + 6 MCO, 6 MCO =
π

2
− θ. (14)

From another view, we have:

6 PjCM = 6 PuCM
′. (15)

Denote du and dv are the pixel size, then

du =
2ftanα

m− 1
, tan(6 PuCM

′) =
(m− 1 − 2Pu)du

2f
. (16)

The final representation of Py can be:

Py = hcot

{
θ − atan[tanα(1 − 2Pu

m− 1
)]

}
(17)

which is the derivation of Eq. 5. Similarly, we have:

Px = CPjtan( 6 PjCP ) (18)

The 6 PjCP is equal to:

6 PjCP = 6 P ′CPu. (19)

Similar to Eq. 16, we can get:

dv =
2ftanβ

n− 1
, tan(6 PvCM

′) =
(m− 1 − 2Pv)dv

2f
, (20)

and

tan(6 P ′CPu) = tan(6 PvCM
′)cos(6 PuCM

′) (21)

Substituting Eq. 19, 20 and 21 to Eq. 18, we have:

Px =
√
h2 + y2

tanβ(
2v

n− 1
− 1)√

1 + [tanα(1 − 2u

m− 1
)]2
. (22)
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Fig. 14. The detailed geometric model of IPM. β is the horizontal angular
aperture of the camera. The point C is the optic center and the point O is the
projection of C on the ground. M is the crossover point of optic axis and the
ground. Pj is the projection of point P along the optic axis and the ground.
m and n are the size of image.

Fig. 15. The detailed side view of the IPM Geometric model. θ is the pitch
angle and α is the vertical angular aperture of the camera. The definitions of
point O, M and P are the same as Fig. 14. f is the focal distance. M ′ and
P ′ are the image point of M and P .
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